Data Mining Techniques

CS 6220 - Section 2 - Spring 2017

Lecture 2

Jan-Willem van de Meent

(credit: Tan et al., Leskovec et al.)
Frequent Itemsets & Association Rules
(a.k.a. counting co-occurrences)
The Market-Basket Model

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>

Input:

Output:

Rules Discovered:

\{\text{Milk}\} \rightarrow \{\text{Coke}\}
\{\text{Diaper, Milk}\} \rightarrow \{\text{Beer}\}

• **Baskets** = sets of purchases, **Items** = products;
• **Brick and Mortar**: Track purchasing habits
 • Chain stores have TBs of transaction data
 • Tie-in “tricks”, e.g., sale on diapers + raise price of beer
 • Need the rule to occur frequently, or no $$’s
• **Online**: People who bought \(X\) also bought \(Y\)

Examples: Plagiarism, Side-Effects

- **Baskets** = sentences;
 Items = documents containing those sentences
- Items that appear together too often could represent plagiarism
- Notice items do not have to be “in” baskets

- **Baskets** = patients;
 Items = drugs & side-effects
- Has been used to detect combinations of drugs that result in particular side-effects
- *Requires extension:* Absence of an item needs to be observed as well as presence

adapted from: J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
Example: Voting records

<table>
<thead>
<tr>
<th>Association Rule</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>{budget resolution = no, MX-missile=no, aid to El Salvador = yes } \rightarrow {Republican}</td>
<td>91.0%</td>
</tr>
<tr>
<td>{budget resolution = yes, MX-missile=yes, aid to El Salvador = no } \rightarrow {Democrat}</td>
<td>97.5%</td>
</tr>
<tr>
<td>{crime = yes, right-to-sue = yes, physician fee freeze = yes} \rightarrow {Republican}</td>
<td>93.5%</td>
</tr>
<tr>
<td>{crime = no, right-to-sue = no, physician fee freeze = no} \rightarrow {Democrat}</td>
<td>100%</td>
</tr>
</tbody>
</table>

- **Baskets** = politicians;
- **Items** = party & votes
 - Can extract set of votes most associated with each party (or or faction within a party)

Frequent Itemsets

• **Simplest question:** Find sets of items that appear together “frequently” in baskets

• **Support** $\sigma(X)$ for itemset X: Number of baskets containing all items in X

 • (Often expressed as a fraction of the total number of baskets)

• Given a *support threshold* σ_{min}, then sets of items X that appear in at least $\sigma(X) \geq \sigma_{\text{min}}$ baskets are called *frequent itemsets*

Example: Frequent Itemsets

- **Items** = \{milk, coke, pepsi, beer, juice\}
- **Baskets**
 - $B_1 = \{m, c, b\}$
 - $B_2 = \{m, p, j\}$
 - $B_3 = \{m, b\}$
 - $B_4 = \{c, j\}$
 - $B_5 = \{m, c, b\}$
 - $B_6 = \{m, c, b, j\}$
 - $B_7 = \{c, b, j\}$
 - $B_8 = \{b, c\}$
- **Frequent itemsets** (\(\sigma(X) \geq 3\)):
 - \{m\}:5, \{c\}:6, \{b\}:6, \{j\}:4, \{m,c\}: 3,
 - \{m,b\}:4, \{c,b\}:5, \{c,j\}:3, \{m,c,b\}:3
Association Rules

• If-then rules about the contents of baskets

\{a_1, a_2, \ldots, a_k\} \rightarrow b \text{ means: “if a basket contains all of } a_1, \ldots, a_k \text{ then it is likely to contain } b”

• In practice there are many rules, want to find significant/interesting ones!

• **Confidence** of this association rule is the probability of \(B=\{b\}\) given \(A=\{a_1, \ldots, a_k\}\)

\[
\text{Support, } s(X \rightarrow Y) = \frac{\sigma(X \cup Y)}{N};
\]

\[
\text{Confidence, } c(X \rightarrow Y) = \frac{\sigma(X \cup Y)}{\sigma(X)}.
\]
Interest of Association Rules

• Not all high-confidence rules are interesting
 • The rule \(A \rightarrow \text{milk} \) may have high confidence because milk is just purchased very often (independent of \(A \))

• Interest Factor (or Lift) of a rule \(A \rightarrow B \):

\[
\text{Lift} = \frac{c(A \rightarrow B)}{s(B)} \quad I(A, B) = \frac{s(A, B)}{s(A) \times s(B)}
\]
Confidence and Interest

\[B_1 = \{m, c, b\} \quad B_2 = \{m, p, j\} \]
\[B_3 = \{m, b\} \quad B_4 = \{c, j\} \]
\[B_5 = \{m, c, b\} \quad B_6 = \{m, c, b, j\} \]
\[B_7 = \{c, b, j\} \quad B_8 = \{b, c\} \]

- Association rule: \(\{m\} \rightarrow b \)
 - Confidence = \(\frac{4}{5}\)
 - Interest Factor = \(\frac{1}{6} \times \frac{4}{5} = \frac{4}{30}\)
 - Item \(b\) appears in \(\frac{6}{8}\) of the baskets
 - Rule is not very interesting!

Many measures of interest

<table>
<thead>
<tr>
<th>Measure (Symbol)</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goodman-Kruskal (λ)</td>
<td>(\left(\sum_j \max_k f_{jk} - \max_k f_{+k} \right) / \left(N - \max_k f_{+k} \right))</td>
</tr>
<tr>
<td>Mutual Information (M)</td>
<td>(\left(\sum_i \sum_j \frac{f_{ij}}{N} \log \frac{Nf_{ij}}{f_{i+}f_{+j}} \right)) / (- \sum_i \frac{f_{i+}}{N} \log \frac{f_{i+}}{N})</td>
</tr>
</tbody>
</table>
| J-Measure (J) | \(\frac{f_{11}}{N} \log \frac{Nf_{11}}{f_{1+}f_{+1}} + \frac{f_{10}}{N} \log \frac{Nf_{10}}{f_{1+}f_{+0}} \)
 | \(\frac{f_{1+}}{N} \times \left(\frac{f_{11}}{f_{1+}} \right)^2 + \left(\frac{f_{10}}{f_{1+}} \right)^2 \) - \(\frac{f_{+1}}{N} \)^2
 | \(+ \frac{f_{0+}}{N} \times \left[\left(\frac{f_{01}}{f_{0+}} \right)^2 + \left(\frac{f_{00}}{f_{0+}} \right)^2 \right] - \left(\frac{f_{+0}}{N} \right)^2 \) |
| Gini index (G) | \(\frac{(f_{11} + 1)}{(f_{1+} + 2)} \) |
| Laplace (L) | \(\frac{(f_{1+}f_{+0})}{(Nf_{10})} \) |
| Conviction (V) | \(\left(\frac{f_{11}}{f_{1+}} - \frac{f_{+1}}{N} \right) / \left(1 - \frac{f_{+1}}{N} \right) \) |
| Certainty factor (F') | \(\frac{f_{11}}{f_{1+}} - \frac{f_{+1}}{N} \) |
| Added Value (AV) | \(\frac{f_{11}}{f_{1+}} - \frac{f_{+1}}{N} \) |

Mining Association Rules

• Problem: Find all association rules with support $\geq s$ and confidence $\geq c$

• Note: Support of an association rule is the support of the set of items on the left side

• Hard part: Finding the frequent itemsets!

• If $\{i_1, i_2, ..., i_k\} \rightarrow j$ has high support and confidence, then both $\{i_1, i_2, ..., i_k\}$ and $\{i_1, i_2, ..., i_k, j\}$ will be “frequent”

Finding Frequent Item Sets

Given k products, how many possible item sets are there?

Finding Frequent Item Sets

Answer: $2^k - 1$ -> Cannot enumerate all possible sets

Subsets of a frequent item set are also frequent.
Corollary: Pruning of Candidates

If we know that a subset is not frequent, then we can ignore all its supersets.
A-priori Algorithm

Algorithm 6.1 Frequent itemset generation of the Apriori algorithm.

1: \(k = 1 \).
2: \(F_k = \{ i \mid i \in I \wedge \sigma(\{i\}) \geq N \times minsup \} \). \{Find all frequent 1-itemsets\}
3: repeat
4: \(k = k + 1 \).
5: \(C_k = \text{apriori-gen}(F_{k-1}) \). \{Generate candidate itemsets\}
6: for each transaction \(t \in T \) do
7: \(C_t = \text{subset}(C_k, t) \). \{Identify all candidates that belong to \(t \)\}
8: for each candidate itemset \(c \in C_t \) do
9: \(\sigma(c) = \sigma(c) + 1 \). \{Increment support count\}
10: end for
11: end for
12: \(F_k = \{ c \mid c \in C_k \wedge \sigma(c) \geq N \times minsup \} \). \{Extract the frequent \(k \)-itemsets\}
13: until \(F_k = \emptyset \)
14: Result = \(\bigcup F_k \).

Generating Candidates C_k

1. **Self-joining**: Find pairs of sets in L_{k-1} that differ by **one** element

2. **Pruning**: Remove all candidates with infrequent subsets
Example: Generating Candidates C_k

- **Frequent itemsets of size 2:**
 - {m, b}: 4, {m, c}: 3, {c, b}: 5, {c, j}: 3

- **Self-joining:**
 - {m, b, c}, {b, c, j}

- **Pruning:**
 - {b, c, j} since {b, j} not frequent

$B_1 = \{m, c, b\}$ \hspace{1cm} $B_2 = \{m, p, j\}$
$B_3 = \{m, b\}$ \hspace{1cm} $B_4 = \{c, j\}$
$B_5 = \{m, c, b\}$ \hspace{1cm} $B_6 = \{m, c, b, j\}$
$B_7 = \{c, b, j\}$ \hspace{1cm} $B_8 = \{b, c\}$
Compacting the Output

- To reduce the number of rules we can post-process them and only output:
 - **Maximal frequent itemsets:**
 No immediate superset is frequent
 - Gives more pruning
 - **Closed itemsets:**
 No immediate superset has same count (> 0)
 - Stores not only frequent information, but exact counts
Example: Maximal vs Closed

\[B_1 = \{m, c, b\} \quad B_2 = \{m, p, j\}\]
\[B_3 = \{m, b\} \quad B_4 = \{c, j\}\]
\[B_5 = \{m, c, b\} \quad B_6 = \{m, c, b, j\}\]
\[B_7 = \{c, b, j\} \quad B_8 = \{b, c\}\]

Frequent itemsets:

\[
\begin{align*}
\{m\}:5, \{c\}:6, \{b\}:6, \{j\}:4, \\
\{m,c\}:3, \{m,b\}:4, \{c,b\}:5, \{c,j\}:3, \\
\{m,c,b\}:3
\end{align*}
\]

Closed
Maximal
Example: **Maximal vs Closed**

![Diagram showing the relationship between Maximal, Closed, and Frequent Itemsets](image)

- **Maximal Frequent Itemsets**
- **Closed Frequent Itemsets**
- **Frequent Itemsets**

Yijun Zhao, DATA MINING TECHNIQUES Association Rule Mining
Given a transaction \(t \), what are the possible subsets of size 3?

Transaction, \(t \)

(items are sorted)

Level 1

Level 2

Level 3

Subsets of 3 items

Subset Operation

Hash Function

Yijun Zhao

DATA MINING TECHNIQUES

Association Rule Mining

Subset Operation

Subset Operation

Match transaction against 11 out of 15 candidates

Apriori: Bottlenecks

1. Set $k = 0$
2. Define C_1 as all size 1 item sets
3. **While C_{k+1} is not empty**
4. Set $k = k + 1$
5. Scan DB to determine subset $L_k \subseteq C_k$ with support $\geq s$ (I/O limited)
6. Construct candidates C_{k+1} by combining sets in L_k that differ by 1 element (Memory limited)
1. Set $k = 0$
2. Define C_1 as all size 1 item sets
3. While C_{k+1} is not empty
4. Set $k = k + 1$
5. Scan DB to determine subset $L_k \subseteq C_k$ with support $\geq s$ (I/O limited)
6. Construct candidates C_{k+1} by combining sets in L_k that differ by 1 element (Memory limited)
FP-Growth Algorithm – Overview

- Apriori requires one pass for each k (2+ on first pass for PCY variants)
- Can we find all frequent item sets in fewer passes over the data?

FP-Growth Algorithm:

- **Pass 1**: Count items with support $\geq s$
 - Sort frequent items in descending order according to count
- **Pass 2**: Store all frequent itemsets in a frequent pattern tree (FP-tree)
 - Mine patterns from FP-Tree
FP-Tree Construction

The structures of the FP-tree after reading the first three transactions are also depicted in the diagram. Each node in the tree contains the label of an item symbol. The FP-tree is subsequently extended in the following way:

For the data set shown in Figure 6.24, a: 8, b: 7, c: 6, d: 5, e: 3, f: 1, g: 1, h: 1, m: 1, n: 1.

Table:

<table>
<thead>
<tr>
<th>TID</th>
<th>Items Bought</th>
<th>Frequent Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{a,b,f}</td>
<td>{a,b}</td>
</tr>
<tr>
<td>2</td>
<td>{b,g,c,d}</td>
<td>{b,c,d}</td>
</tr>
<tr>
<td>3</td>
<td>{h, a,c,d,e}</td>
<td>{a,c,d,e}</td>
</tr>
<tr>
<td>4</td>
<td>{a,d, p,e}</td>
<td>{a,d,e}</td>
</tr>
<tr>
<td>5</td>
<td>{a,b,c}</td>
<td>{a,b,c}</td>
</tr>
<tr>
<td>6</td>
<td>{a,b,q,c,d}</td>
<td>{a,b,c,d}</td>
</tr>
<tr>
<td>7</td>
<td>{a}</td>
<td>{a}</td>
</tr>
<tr>
<td>8</td>
<td>{a,m,b,c}</td>
<td>{a,b,c}</td>
</tr>
<tr>
<td>9</td>
<td>{a,b,n,d}</td>
<td>{a,b,d}</td>
</tr>
<tr>
<td>10</td>
<td>{b,c,e}</td>
<td>{b,c,e}</td>
</tr>
</tbody>
</table>
Mining Patterns from the FP-Tree

Step 1: Extract subtrees ending in each item

Full Tree

Subtree e

Subtree d

Subtree c

Subtree b

Subtree a

a: 8, b: 7, c: 6, d: 5, e: 3, f: 1, g: 1, h: 1, m: 1, n: 1

Mining Patterns from the FP-Tree

Step 2: Construct Conditional FP-Tree for each item

Full Tree

Subtree e

Conditional e

Conditional Pattern Base for e

\[
\text{acd: 1, ad: 1, bc: 1}
\]

Conditional Node Counts

\[
\text{a: 2, b: 1, c: 2, d: 2}
\]

- Calculate counts for paths ending in e
- Remove leaf nodes
- Prune nodes with count \(\leq s \)

Mining Patterns from the FP-Tree

Step 3: Recursively mine conditional FP-Tree for each item

Conditional e

Subtree de

Conditional de

Subtree ce

Conditional ce

Mining Patterns from the FP-Tree

Conditional Pattern Base

<table>
<thead>
<tr>
<th>Suffix</th>
<th>Pattern Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>acd:1; ad:1; bc:1</td>
</tr>
<tr>
<td>d</td>
<td>abc:1; ab:1; ac:1; a:1; bc:1</td>
</tr>
<tr>
<td>c</td>
<td>ab:3; a:1; b:2</td>
</tr>
<tr>
<td>b</td>
<td>a:5</td>
</tr>
<tr>
<td>a</td>
<td>φ</td>
</tr>
</tbody>
</table>

Frequent Itemsets

<table>
<thead>
<tr>
<th>Suffix</th>
<th>Itemsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>{e}, {d,e}, {a,d,e}, {c,e}, {a,e}</td>
</tr>
<tr>
<td>d</td>
<td>{d}, {c,d}, {b,c,d}, {a,c,d}, {b,d}, {a,b,d}, {a,d}</td>
</tr>
<tr>
<td>c</td>
<td>{c}, {b,c}, {a,b,c}, {a,c}</td>
</tr>
<tr>
<td>b</td>
<td>{b}, {a,b}</td>
</tr>
<tr>
<td>a</td>
<td>{a}</td>
</tr>
</tbody>
</table>

FP-Growth vs Apriori

Simulated data 10k baskets, 25 items on average

(from: Han, Kamber & Pei, Chapter 6)
FP-Growth vs Apriori

<table>
<thead>
<tr>
<th>File</th>
<th>Apriori</th>
<th>FP-Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple Market Basket test file</td>
<td>3.66 s</td>
<td>3.03 s</td>
</tr>
<tr>
<td>"Real" test file (1 Mb)</td>
<td>8.87 s</td>
<td>3.25 s</td>
</tr>
<tr>
<td>"Real" test file (20 Mb)</td>
<td>34 m</td>
<td>5.07 s</td>
</tr>
<tr>
<td>Whole "real" test file (86 Mb)</td>
<td>4+ hours (Never finished, crashed)</td>
<td>8.82 s</td>
</tr>
</tbody>
</table>

http://singularities.com/blog/2015/08/apriori-vs-fpgrowth-for-frequent-item-set-mining
FP-Growth vs Apriori

Advantages of FP-Growth

• Only 2 passes over dataset
• Stores “compact” version of dataset
• No candidate generation
• Faster than A-priori

Disadvantages of FP-Growth

• The FP-Tree may not be “compact” enough to fit in memory
• Used in practice: PFP (a distributed version of FP-growth)
Exploratory Data Analysis (demo)
Counting in the Shell

grep '^#c' publications.txt \
| sed 's/^#c//; ' | sort \
| uniq -c | sort -nr \
> venue_counts.txt

46993 CoRR
13835 IEICE Transactions
13260 ICRA
10978 Discrete Mathematics
...

Counting in the Shell

```bash
awk 'BEGIN {sum=0} {sum=sum+$1; print sum}' \
venue_counts.txt > venue_cumsum.txt
```

46993
60828
74088
85066
...

Spinning up Jupyter (Docker)

docker run -it --rm -p 8888:8888 \
 -v "$PWD":/home/jovyan/work \
 jupyter/pyspark-notebook

[I 15:59:40.962 NotebookApp] The Jupyter Notebook is running at: http://[all ip addresses on your system]:8888/?token=90c08be4b2cecb020965c0fe7160049b56412869f7f5f5f8

[I 15:59:40.962 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).

[C 15:59:40.962 NotebookApp]
 Copy/paste this URL into your browser when you connect for the first time, to login with a token:

 http://localhost:8888/?token=90c08be4b2cecb020965c0fe7160049b56412869f7f5f5f8
Spinning up Jupyter (Docker)

```python
In [2]: import numpy as np
   ...: import matplotlib.pyplot as plt
   ...: plt.style.use('fivethirtyeight')
   ...: %matplotlib inline

In [4]: pub_cumsum = np.loadtxt('venue_cumsum.txt')

In [5]: plt.plot(pub_cumsum)
   ...: plt.xlabel('number of publication venues')
   ...: plt.ylabel('number of publications')

Out[5]: <matplotlib.text.Text at 0x7fe9fa91f28>
```
Counting with Spark

In [1]:
import pyspark
from pyspark import SparkContext
from pyspark.mllib.fpm import FPgrowth
SparkContext.setSystemProperty('spark.executor.memory', '2g')
sc = pyspark.SparkContext('local[*]')

In [2]:
import re
rdd = sc.textFile('publications.txt')
small_rdd = rdd.sample(False, 1e-3)
venue_rdd = small_rdd.filter(
 lambda l: re.match('^#c(.*)', l).map(
 lambda l: re.match('^#c(.*)', l).group(1)
).group(1))
venue_counts = venue_rdd.countByValue()

In [4]:
svc = sorted(venue_counts, key=venue_counts.get, reverse=True)
for v in svc[:5]:
 print(v, venue_counts[v])

CoRR 57
IEICE Transactions 20
ICRA 14
Discrete Mathematics 13
IEEE Transactions on Information Theory 12